1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
wilburprim6491 edited this page 2025-04-08 06:44:41 +02:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion parameters to develop, experiment, and properly scale your generative AI ideas on AWS.

In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled versions of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that uses reinforcement discovering to boost reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A key distinguishing function is its reinforcement knowing (RL) step, which was utilized to refine the model's reactions beyond the standard pre-training and tweak process. By incorporating RL, DeepSeek-R1 can adjust more efficiently to user feedback and objectives, eventually enhancing both relevance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, suggesting it's geared up to break down complex queries and reason through them in a detailed manner. This guided reasoning procedure allows the model to produce more accurate, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT capabilities, aiming to produce structured actions while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has actually captured the market's attention as a flexible text-generation design that can be incorporated into numerous workflows such as agents, logical thinking and data interpretation jobs.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion parameters, enabling effective inference by routing queries to the most relevant expert "clusters." This technique permits the design to concentrate on various issue domains while maintaining total effectiveness. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 design to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more efficient models to mimic the behavior and thinking patterns of the larger DeepSeek-R1 design, utilizing it as an instructor model.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this design with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous material, and assess designs against essential safety requirements. At the time of composing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop several guardrails tailored to various use cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you require access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limit boost, produce a limit boost request and reach out to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) consents to use Amazon Bedrock Guardrails. For instructions, see Set up consents to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, prevent hazardous material, and evaluate models against essential security requirements. You can implement security procedures for setiathome.berkeley.edu the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic circulation includes the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, choose Model catalog under Foundation designs in the navigation pane. At the time of writing this post, you can use the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 design.

The model detail page provides important details about the model's capabilities, rates structure, and execution standards. You can discover detailed usage guidelines, including sample API calls and code bits for combination. The design supports different text generation jobs, including content creation, code generation, and concern answering, using its support learning optimization and CoT thinking abilities. The page likewise consists of deployment choices and licensing details to assist you start with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, pick Deploy.

You will be prompted to set up the implementation details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of circumstances, get in a variety of instances (in between 1-100). 6. For Instance type, select your instance type. For ideal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can configure advanced security and facilities settings, including virtual personal cloud (VPC) networking, service role consents, and encryption settings. For many use cases, the default settings will work well. However, for production implementations, you might want to review these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to begin using the design.

When the deployment is complete, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in play area to access an interactive interface where you can explore different prompts and adjust model parameters like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimum outcomes. For example, content for reasoning.

This is an outstanding method to check out the model's reasoning and text generation capabilities before incorporating it into your applications. The play ground supplies immediate feedback, assisting you understand how the design responds to numerous inputs and letting you fine-tune your triggers for optimum results.

You can rapidly evaluate the design in the playground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to perform inference using a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends out a request to create text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses two practical methods: utilizing the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both methods to help you pick the method that finest fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The design internet browser shows available designs, with details like the supplier name and model capabilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card. Each design card reveals key details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if applicable), indicating that this design can be signed up with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to see the design details page.

    The model details page includes the following details:

    - The model name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details. - Technical requirements.
  • Usage standards

    Before you release the design, it's advised to review the model details and license terms to confirm compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, use the immediately created name or develop a custom one.
  1. For example type ¸ pick an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the variety of instances (default: 1). Selecting proper instance types and counts is crucial for expense and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this design, we highly advise adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the design.

    The deployment process can take a number of minutes to complete.

    When deployment is total, your endpoint status will alter to InService. At this moment, the model is ready to accept reasoning requests through the endpoint. You can monitor the implementation progress on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the release is total, you can conjure up the design utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get started with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the necessary AWS authorizations and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for reasoning programmatically. The code for releasing the model is offered in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and implement it as revealed in the following code:

    Tidy up

    To prevent undesirable charges, finish the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the model utilizing Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace releases.
  5. In the Managed implementations section, find the endpoint you desire to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the proper release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies develop ingenious options using AWS services and sped up compute. Currently, he is concentrated on establishing strategies for fine-tuning and optimizing the inference performance of large language designs. In his leisure time, Vivek enjoys hiking, enjoying movies, and trying various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about developing services that help customers accelerate their AI journey and unlock business value.